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SUMMARY 
The prediction of the two-dimensional unsteady flow established in a radial flow centrifugal pump is 
considered. Assuming the fluid incompressible and inviscid, the velocity field is represented by means of 
source and vorticity surface distributions as well as a set of point vortices. Using this representation, a grid- 
free (Lagrangian) numerical method is derived based on the coupling of the boundary element and vortex 
particle methods. In this context the source and vorticity surface distributions are determined through the 
non-entry boundary condition together with the unsteady Kutta condition. In order to satisfy Kelvin's 
theorem, vorticity is shed at the trailing edges of the impeller blades. Then the vortex particle method is used 
to approximate the convection of the free vorticity distribution. Results are given for a pump configuration 
experimentally tested by Centre Technique des Industries Mecaniques (CETIM). Comparisons between 
predictions and experimental data show the capability of the proposed method to reproduce the main 
features of the flow considered. 
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INTRODUCTION 

Among the various engineering applications amenable to CFD analysis, those with moving 
boundaries constitute a more or less distinct category. A typical example of this kind, to be 
considered in the present paper, is the flow within a pump. For a pump configuration the moving 
boundaries are the blades of the impeller which rotate with respect to the spiral casing. 

The full mathematical problem describing flows with moving boundaries is clearly the 
unsteady problem for the Navier-Stokes equations. In order to solve this problem numerically, 
we can use either Eulerian or Lagrangian methods. In the first case a spatial grid throughout the 
flow field is required. However, the presence of moving boundaries calls for special treatment 
leading to considerable computational effort. In the framework of the viscous flow theory, 
recently Kueny and Papantonis' presented numerical results for the unsteady flow within the 
spiral casing. These results were obtained by means of a finite volume numerical scheme on a 
fixed grid limited by the exit section of the impeller. The unsteadiness of the flow was introduced 
through the boundary conditions along the exit section of the impeller. More specifically, a non- 
uniform rotating profile of the absolute velocity is considered. However, the replacement of the 
impeller by a rotating profile is a crude approximation of the interaction between the impeller and 
the spiral casing. This approximation can give misleading results, especially under off-design 
operation conditions. Evidently, in order to improve the accuracy of the numerical results, the 
solution domain must be extended within the region of the impeller. In this case the exit section of 
the impeller becomes a matching boundary where continuity conditions are imposed. This is by 
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no means a trivial task since matching conditions must take into account the flux of vorticity 
across the exit section of the impeller. 

In contrast, Lagrangian methods and especially vortex particle methods are grid-free and thus 
preferable for flows with moving boundaries. However, while moving boundaries are easily 
tackled, the fulfilment of the no-slip condition is not straightforward. In the context of fully 
Lagrangian methods this condition is satisfied by a vorticity generation process all along the solid 
boundaries. As reported in the literature,’, in order to obtain a good approximation, a large 
number of vortex particles are required. Obviously, for complicated configurations such as that of 
a pump, reliable predictions can be produced only with considerable computer resources. On the 
other hand, under the hypothesis of an inviscid fluid, most of the disadvantages of the Lagrangian 
methods no longer exist. As explained in the following sections, in this context a general method 
can be derived with no need for additional simplifying assumptions. 

All previous relevant works introduce either geometrical or physical simplifications. More 
specifically, in the works presented by Albano? Hureau’ and Devinant et aL6 the blades are 
considered of zero thickness and the flow irrotational. Thus no vortex shedding at the trailing 
edges of the impeller blades takes place. Consequently this is a rather quasi-steady approximation 
of the flow. A more realistic approach was given by Shoji and Ohashi’. In that work the problem 
of a single impeller whirling on a circular orbit is considered. Although the blades still remain 
thin, vorticity shedding is introduced. 

As already mentioned, for the inviscid case a general fully Lagrangian method can be derived. 
The method is based on the combined application of Helmholtz’s and Green’s theorems. As a 
result, a representation theorem for the velocity field is obtained. According to this theorem, the 
velocity field is expressed uniquely by means of source and vorticity surface distributions as well 
as by means of a set of point vortices. The source and vorticity distributions are determined 
through the non-entry boundary condition and the Kutta condition. Since the flow is unsteady, it 
follows from Kelvin’s theorem that vorticity is shed at the trailing edges of the blades of the 
impeller. Through this process, free vorticity is produced. Clearly all fluid particles carrying 
vorticity will be convected along the trajectories of the flow field. 

The approach just outlined is closely related to the method used by Basu and Hancock8 for the 
unsteady flow around an aerofoil (for a discussion on the unsteady Kutta condition see also 
References 9-1 1). 

In order to validate the proposed method, results are given in the last section of the present 
paper for a centrifugal pump experimentally tested by CETIM. Comparisons show that the 
predicted variation of the head versus the flow rate is in very good agreement with the 
corresponding experimental data, while the details of the flow seem well reproduced at least 
qualitatively. 

THE UNSTEADY FLOW FIELD 

For a two-dimensional approach to the problem, the flow field considered is as in Figure 1. 
D denotes the domain occupied by the fluid with boundary aD consisting of the spiral casing C, 
the exit section So and the rotor blades Si, i = l(l)Nb. 

The flow examined in the sequel is the unsteady flow generated by the rotation of the rotor 
blades at angular velocity 0,. For a centrifugal pump the rotation of the rotor results in an inflow 
across the inlet section. Let Q(t)  denote the flow rate, represented as a first approximation by a 
point source located at the centre 0 of the rotor. Assuming the fluid incompressible and inviscid, 
the main feature of the flow considered is the non-zero circulation around every rotor blade. In 
the context of unsteady flow theory the circulation around a moving solid boundary is time- 
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Figure 1. Definition of the physical domain 

dependent. This fact combined with Kelvin’s theorem leads to the necessity of vorticity shedding 
from the trailing edges of the rotor blades. Consequently the velocity field is no longer 
irrotational. 

Under the above assumptions and according to the Helmholtz decomposition theorem the 
velocity field u(x; t) is given by 

U(X; t )  = vrp(X; t )  + v A $(X; t), ( 1) 

where cp( *; t) and $( *;  t) denote the scalar potential and the streamfunction repectively. Taking 
the divergence and curl of (l), we deduce 

where w (  0 ;  t) denotes the free vorticity distribution and a(* )  the Dirac function. If q ( * ;  t) and 
$( *; t) are continuous in D u aD, by means of Green’s theorem we obtain 

P 

where a( a ;  t) denotes the source distribution, y (  * ; t) the bound vorticity distribution and G( . ) the 
singular solution of the Laplace equation. It follows from (1H5) that u(*; t) is fully determined if 
CJ( *; t), y (  -; t) and w( *; t) are given. In this direction appropriate conditions are imposed for the 
three auxiliary distributions a( *; t), y (  *; t) and a( *; t). 

For an inviscid fluid the only kinematical boundary conditions available is the non-entry 
condition along aD. More specifically, 

w,(n(x; t)  A x(t)), x(t)€Si(t), i = l(l)N,,, 
g(x; t )  = u(x; t).n(x) = 0, XEC, (6)  I - Q ( tYLo 9 X E SO, 

where n( -; t) denotes the unit normal as in Figure 1. This condition can be used to determine 
either rp( -; t) or $( -; t). The form of representation of rp( *;  t) suggests using this condition as a 
Neumann condition for the evaluation of the source distribution. Inserting (4) and ( 5 )  in (1) and 
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then in (6), we derive an integral boundary relation of the form 

dD(y) + 2ng(x; t). X X - Y  
(7) 

This relation can be interpreted as a Fredholm integral equation of the second kind for a( -; t). 
Since there is no other kinematical condition, the streamfunction can be determined only through 
dynamical conditions concerning the vorticity shedding. 

In this direction we assume non-zero bound vorticity y (  * ; t) only along the rotor blades. 
Moreover, for every blade, y (  0 ;  t) is taken as constant. Thus 

where Li denotes the length of Si(t) and ri(t) the circulation around the ith blade at time t. As 
explained in the sequel, the evaluation of the circulations Ti is based on a suitable application of 
the Kutta condition. In order to complete the determination of the streamfunction, a model for 
the vorticity production is required. Through this model we can give to m(*; t) an explicit 
description. 

Following the analysis of Mangler and SmithI2 (see also References 8 and 13), the vorticity at 
the trailing edge of a blade is shed tangentially to either one of the two sides of the wedge formed, 
according to the sign of the circulation around the blade (Figure 2). This process results in the 
formation of a thin vortex sheet that models the wake of the blade in the framework of inviscid 
flow theory. Let w: (t) and w; (t) denote the velocities relative to the blade at the two sides of the 
trailing edge, ywi ( t )  the intensity of the vortex sheet and dlwi(t) the length produced in a time 
interval dt. Since the surface vorticity is equivalent to a tangential velocity jump, 

y,&) = w: (t) - w; (t). 

dTi(t) = ri(t + dt) - ri(t) = YWi(t)dlwi(t), 

dl,i(t) = i[w: (t) + W; (t)] dt = wi(t)dt. 

(9) 

(10) 

(11) 

Moreover, from Kelvin’s theorem we obtain 

where 

Combining (9H1 l), we can obtain a non-linear evolution equation for ri(t): 

(12) -- dri(t) - +[W’ (t) + w; ( t ) ]  cw: ( t )  - w; ( t ) ] .  
dt 

This condition is often called the unsteady Kutta c~ndi t ion.~ 

Figure 2. Vortex sheet shedding from the trailing edge of the blade 
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In accordance with the above description, the free vorticity distribution is the sum of Nb vortex 
sheets S,,(t). Let Zi(r ;  t) denote the position of a point on Sw,(t) at time t that was emitted from the 
ith blade at time r. It follows that 

Nk 

i =  1 

with initial conditions 

Ywi (0 )  = 0, Zi(7; 0) = xTE(~), (15) 

where xTE(z) denotes the position of the trailing edge of the ith blade at time r. 
From the above analysis we finally obtain the following representation for the streamfunction: 

Equation (7) for the source distribution together with equation (12) for the blade circulations and 
equations (lo), (1 l), (14) and (15) for the evolution of the vortex sheets Swi define the problem to be 
solved. 

THE NUMERICAL METHOD 

In order to numerically solve the problem formulated in the previous section, a time-marching 
scheme is proposed with time step At. Using the notation 

a(x; kAt) = d k ) ( x )  ( 17) 

for all time-dependent variables, for every time step k = 0,1, . . . , given the solution at t = kAt, 
the algorithm will determine the solution at t = (k + 1)At. The realization of this process is based 
on the boundary element dicretization for equation (7) and the vortex particle approximation for 
the Nb vortex sheets. In this direction the boundary aD is divided into flat elements S,, e = 1(1)E, 
carrying a constant source distribution. Especially for the elements forming the rotor blades a 
constant vorticity distribution is added. If equation (7) is satisfied for all midpoints x$),,, of the 
boundary elements, a set of linear equations with respect to the source intensities t7Lk), e = 1(1)E, 
is obtained. Clearly this system depends on the approximation of the blade wakes. In the context 
of the vortex particle method the free vorticity is given as a sum of point vortices. For the problem 
considered during a time step j, N,, vortex segments AS:? carrying constant vorticity distributions 
7:; are shed. These segments are transformed into point vortices when convected for the first time. 
Let Q. and Zi") denote the intensity and position of the corresponding point vortex. Using (10) 
and according to Kelvin's theorem, 

= r, - r;-1. (18) 

Since yg is constant, a consistent choice for 
as initial condition, 

is the midpoint of AS:]. Clearly with this choice 

(19) zi(k+ 1) = z ; ( k )  + AtU(k)(Z;(k)), 
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Under the above assumptions, dk+ I)(x) is given by 

where 

1 if x E AS:!, 
0 otherwise. 

S(X; AS:!) = 

Therefore equations (7), (9) and (10) lead to the following system: 

{ d k ) }  = {of', a@), . . . , at'}T, 
= {rik), rhk), . . . , r,} ( k )  T . 

If the geometry (i.e. the length and direction of AS$+ l)) of the vortex sheets is given, then (22) is a 
linear system with respect to {dk+l)} and {Pk+l ) } .  

Having completed the description of the approximations introduced, we proceed with the 
substeps comprising a full time step. Starting at the kth step, we are placed at time t = kAt. Then: 

1. Convection substep. All point vortices together with the free vortex segments are convected 
using (19). At their new positions the free vortex segments are transformed into vortex 
particles according to (1 8). 

2. lnitialization substep. Using the velocity field dk), the length and direction of the vortex 
segment to be emitted at t = (k + 1)At are defined. 

3. lterative procedure 

3.1. Solving the linear system (22), the source distribution as well as the circulations around 

3.2. The geometry of the new vortex segments is corrected. 
3.3. If convergence is accomplished, we proceed to the next step; otherwise we repeat 3.1 

We conclude the description of the method with two remarks related to the convection step. 
The first concerns the calculation of the velocity induced by a point vortex. Owing to the singular 
behaviour of G(  .) and its derivatives, we regularize the induced velocity by means of a cut-off 
f~nction. '~' l5 A rather frequent choice is the exponential function defining the Rankine vortex. 
Selecting this cut-off function, the regularized velocity at x induced by a point vortex of intensity 

the blades are determined. 

and 3.2. 
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R located at y takes the form 

R 
x - Y [ 1 -exp (I" ~ ;2Y">1 , u(x) = - k A ~ 

271 Ix - y)2 

where E is the cut-off length. The second remark concerns the convection itself. Clearly, as point 
vortices are convected, even for relatively small At, it is probable that a vortex will pass across the 
boundary aD. This can happen only in the vicinity of aD, where length scales present a quick 
variation. In order to account for this local behaviour, either a smaller time step or a higher-order 
scheme is required. In both cases the computational cost increases. In order to keep the 
computational cost reasonable, we preferred a simple correction. Thus the vortices that fall 
outside D are simply moved back in D symmetrically with respect to the aD positions. 

RESULTS AND DISCUSSION 

In order to validate the method given in the previous section, numerical tests were conducted for 
a centrifugal pump experimentally tested by CETIM.l6 The main characteristics of this pump are 
given in Table I. The volute is designed according to the moment of momentum conservation 
principle. The inlet and outlet edges of the impeller blades are parallel to the axis of rotation. 

For the boundary element approximation, 96 elements were used along the spiral casing, six 
elements along the exit section So and 40 elements along every blade. In order to improve the 
approximation of the flow field, the repartition of elements is refined in regions where sharp local 
gradients are expected. For the configuration considered, refinement is necessary around the 
tongue as well as around the trailing and leading edges of the blades. 

The time step was taken as At = T/60, where T = 271/w is the period of the rotation. Since the 
number of blades is equal to five and oR is constant, 12At is the time interval required for a blade 
to move to the position the following blade had at  the beginning of this interval. Therefore the 
flow is expected to tend to become periodic with period T/5. This feature has been verified 
numerically. 

In the sequel, results are presented for four different values of the flow rate Q : Q/Q,, = 047, 
0.706, 1.0 and 1.41, with Q. denoting the flow rate at the best efficiency. According to the 
experimental data for the pump running at n = lo00 rpm, Q,, is equal to 85 m3 h-'. 

In Figure 3 the positions of the free vortices are given at t = 92At, i.e. after 1-5 rotations of the 
impeller, for the four values of the flow rate. Considering that the flow is impulsively started, the 

Table I. The main characteristics of the CETIM pump 

Inner diameter of the impeller 
Outer diameter of the impeller 
Inclination of the blades at the inner diameter 
Inclination of the blades at the outer diameter 
Width of the impeller at the inlet diameter 
Width of the impeller at the outlet diameter 

Position of the tongue 

d ,  = 0.134 rn 
d,  = 0.310 m /?, = 22.3" 
/?, = 30.0" 
b, = 0.030 m 
b, = 0.0145 m 

a, = 9" 
Number of blades Nb = 5 

Volute angle a, = 9.5" 
Ratio of throat area A, to outlet area A, AJA, = 1.20 
Ratio of exit area A ,  to outlet area A, A01 A, = 0.60 
Speed of rotation of the impeller 
Angular velocity 

n = 1OOOrpm 
wR = 104.72 rads-'  
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Figure 3. Position of the free vortices at t = 92At: (a) Q/Q. = 047; (b) Q/Q. = 0.706; (c) Q/Q. = 1.0; (4 Q/Q. = 1.41 

initial vortices carry a large amount of vorticity. Thus the flow can be considered well developed 
as soon as these vortices are convected outside the exit section So and so their contribution to the 
flow field inside the casing is small. This is clearly shown in Figure 3. On the other hand, we notice 
that inside the spiral casing the vortices are almost uniformly distributed in accordance with the 
non-uniform character of the velocity field. In contrast, in the exit channel of the casing, 
downstream from the tongue of the casing, the vortices retain their organized structure since the 
flow field is more uniform there and no important interaction between the vortices takes place. Of 
course, as the flow rate increases, the shear in the exit channel increases as well and so the 
structure of the vorticity distribution therein is less organized. 

The positions of the free vortices shed from the blades for the case of Q,, and for t = 5At and 8At 
are given in Figures 4(a) and 4(b) respectively. It is interesting to notice that the first vortices shed 
by the blade located just after the tongue are convected into the exit channel directly, forming the 
organized structures shown in Figure 3. On the other hand, the other vortices have to do an 
almost complete rotation into the spiral casing before arriving in the exit channel. 

The vector diagrams of the absolute velocity into the spiral casing at t = 92At are given in 
Figure 5 for the four selected values of the flow rate. The stagnation point for Q/Q, = 0.47 and 
0.706 is well located on the tongue of the casing and therefore the flow field is more regular there. 
As the flow rate increases, the stagnation point of the casing moves towards the lower surface of 
the tongue, as expected. This results in a less regular flow field. In conclusion, the best flow rate for 
the considered spiral casing is between 0.47Qn and 0*706Q,. This result can be explained by the 
fact that the real spiral casing is not two-dimensional and its width in the axial direction increases 
in order to reduce the overall dimensions of the casing. On the other hand, if for the needs for the 
numerical solution the radial sections of the casing were increased in order to satisfy mass 
conservation, the moment of momentum principle could no longer be satisfied. 
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Figure 4. Position of the free vortices for Q = Q. at time steps 5At and 8At 

Figure 5. Vector diagram of the absolute velocity into the spiral casing at t = 92At: (a) Q/Qn = 0.47; (b) Q/Q. = 0.706, 
(4 Q/Q. = 1.0, (4 Q/Q. = 1.41 

The vector diagrams of the relative velocity between the blades at t = 92At for the four selected 
values of the flow rate are given in Figure 6. For the smaller values of the flow rate the 
recirculation of the relative flow between the blades is more pronounced, while the centre of the 
recirculation region moves towards the outer diameter of the impeller as the flow rate increases. 
For Q/Qn = 1-0 the inclination of the relative velocity at the input section of the impeller seems to 
be well adapted to the corresponding inclination of the blades. In contrast, for the smaller values 
of the flow rate a negative angle of incidence appears at the leading edge of the blades. For the 
selected values of the flow rate the relative flow is almost identical for all the blade-to-blade 
channels with the exception of the one located against the tongue of the casing. In this last case 
the recirculation region is less pronounced or even non-existent (for Q/Qn = 1.0 and 1.41). This 



904 E. E. MORFIADAKIS, S. G. VOUTSINAS AND D. E. PAPANTONIS 

Figure 6. Vector diagram of the relative velocity between the blades at t = 92At: (a) Q/Q. = 0.47; (b) Q/Q. = 0.706, 
(4 Q/Q, = 1.0; (4 Q/Q. = 1.41 

phenomenon is expected since this blade-to-blade channel discharges almost directly to the exit 
channel of the casing. Consequently the crossing flow rate is more important compared to the 
other blade-to-blade channels and the blades are less loaded when passing from the tongue. 

At the exit section of the impeller the flow conditions are not uniform owing to the wakes of the 
blades and the non-axisymmetric configuration of the spiral casing. This last non-axisymmetry is 
expected to be more important in the vicinity of the tongue, where the distance between the blades 
and the tongue is a minimum. This effect is shown in Figures 7(a) and 7(b) for Q/Q, = 0.47 and 
0.706 respectively, where the radial component of the absolute velocity around the impeller’s 
outer diameter is plotted. Position 1 on the horizontal axis corresponds to the location of the 
tongue, while on the whole perimeter of 360”, 120 points are considered. The triangles located on 
the horizontal axis (c, = 0) indicate the position of the blade trailing edges at t = 92At. The solid 
line corresponds to the impeller alone, i.e. without the spiral casing, and for this reason it is 
perfectly periodic. It follows from both physical considerations and experimental data” that the 
formation of the blade wakes results in a local sharp increase of the radial component of the 
velocity. Since the fluid is directly guided by the blades, this non-uniform profile is rotating 
unchanged with the impeller. The dashed line gives the calculated radial component around the 
outer perimeter of the impeller with the spiral casing taken into account as well. Comparison of 
these two curves indicates the influence of the spiral casing. Clearly the influence becomes more 
important in the vicinity of the tongue. 

The unsteady periodic character of the flow is also displayed in the time variation of the 
moment developed. The moment from the axis of rotation on every blade is calculated by means 
of the Bernoulli equation. From the total moment developed to all the blades, i.e. on the impeller, 
the theoretical head H, of the impeller is then calculated. We consider a full period corresponding 
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Figure 7. Radial component of the absolute velocity arciund the impeller exit section at t = 92At: ___ , impeller 
without the spiral casing - - - - - -, impeller with the spiral casing; (a) Q/Qn = 0.47; (b) Q/Q. = 0.706 
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Figure 8. Variation of the theoretical head H, of the impeller for 12 successive time steps: ---, Q = 120m3/h; 
- - -, Q = 85 m3/h; - - - -, Q = 60 m3/h; ___ , Q = 40m3/h 

to 12 time steps. Let H,, denote the mean theoretical head obtained during this time interval. In 
Figure 8 the variation of the ratio H,/H, ,  is given during a period for the four selected values of 
the flow rate. At the sixth time step the trailing edge of one blade is located against the tongue. 
Clearly at this time the developed theoretical head H, takes its minimum value. Furthermore, it 
follows from Figure 8 that as the flow rate increases, the variation of H, becomes more intense. 

The mean value H,, of the calculated theoretical head of the impeller with and without the 
spiral casing versus the flow rate Q is plotted in Figure 9. In the same figure the measured total 
head H of the pump is also plotted. The head Hum without the spiral casing is greater than that of 
the mean head H,, of the pump by an almost constant amount, of the order of 0.7 m WG. The 
difference between the mean theoretical head H, ,  and the measured head H of the pump is due to 
the hydraulic losses of the flow through the pump. For the selected values of the flow rate the 
coefficient of hydraulic efficiency, defined as tfh = H/Hu,, can be calculated. The overall efficiency 
q of a centrifugal pump is the product q = vh vQ qm, where vQ is the volumetric efficiency and q,  
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Figure 9. Characteristic curve of the pump running at n = loo0 rpm: -.- , calculated head without the spiral casing 
- - -, calculated mean head with the spiral casing; ~ , measured.' ' 
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Figure 10. Comparison of the calculated with the measured overall efficiency of the pump running at lo00 rpm: solid line, 
measured; symbols, calculated 

the mechanical efficiency, both of the order of 0.97. The measured values of the overall efficiency q 
as well as the calculated overall efficiency qc = qhqaqm versus the flow rate are plotted in 
Figure 10, proving that the calculated overall performances of the pump are in very good 
agreement with the corresponding measured values. 

CONCLUSIONS 

A numerical method based on the theory of unsteady inviscid flow has been developed for the 
prediction of the unsteady flow established within a radial flow centrifugal pump with a spiral 
casing. The method has no simplifying assumptions regarding the geometry of either the spiral 
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casing or the impeller blades. From the results presented it follows that if hydraulic losses are 
taken into account, the predictions of the head variations are reliable. Regarding the details of the 
flow field established within the pump (Figures 5 and 6), the patterns produced numerically are at 
least qualitatively correct. A definite validation would require experimental data not available at 
the moment and rather difficult to obtain anyway. However, the accuracy of the prediction of the 
head leads to the conclusion that the method can be used safely as a computational tool for the 
analysis of pump applications. The procedure could also be applied for the optimization of the 
spiral casing form and especially of the tongue in order to minimize the disturbances induced 
in the flow field under off-design operation conditions, thus permitting the reduction of the 
hydrodynamic noise emitted by the pump. 

APPENDIX: NOMENCLATURE 

physical domain of the flow field 
boundary of the ith blade 
vortex sheet shed from the ith blade 
exit width 
length of Si 
flow rate 
angular velocity of the impeller 
number of blades 
velocity field 
scalar potential 
streamfunction 
vorticity field 
surface source distribution 
surface vorticity distribution 
circulation of the ith blade 
vorticity shed from the ith blade 
parametric representation of Swi 
intensity of the free vortices 
cut-off length 
time step 
total head developed by the pump 
head (‘theoretical’) developed by the impeller 
radial component of the absolute velocity 
efficiency 
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